:: Kuis Softskill ::

Komputasi Modern

Soal

  1. Apa yang kamu ketahui tentang komputasi modern ?
  2. Jelaskan sejarah komputasi modern !
  3. Sebutkan macam-macam komputasi modern !

Jawaban

1. komputasi modern ::

Komputasi modern terdiri dari dua kata yaitu komputasi dan modern. Komputasi dapat diartikan sebagai cara untuk menemukan pemecahan permasalahan dari data input dengan suatu algoritma. Komputasi merupakan subbagian dari matematika. Disebut modern karena menggunakan alat canggih saat menyelesaian masalah. Maka dapat di simpulkan Komputasi modern adalah perhitungan yang menggunakan komputer canggih dimana pada computer tersebut tersimpan sejumlah algoritma untuk menyelesaikan masalah perhitungan secara efektif dan efisien. Komputasi modern digunakan untuk memecahkan masalah antara lain untuk menghitung akurasi (bit, floating point), kecepatan (dalam satuanHz), problem volume besar (paralel), modeling (NN dan GA) dan kompleksitas (menggunakan Teori Big O).

 2. Sejarah Komputasi Modern::

Jawab :

Komputasi bisa diartikan sebagai cara untuk menyelesaikan sebuah masalah dari
inputan data dengan menggunakan algoritma.

Konsep dasar arsitektur komputer modern adalah konsep sebuah sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory. Konsep ini pertama kali digagasi oleh John Von Neumann. Beliau di lahirkan di Budapest, ibukota Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Karya – karya yang dihasilkan adalah karya dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer. Beliau juga merupakan salah seorang ilmuwan yang sangat berpengaruh dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kepiawaian John Von Neumann teletak pada bidang teori game yang melahirkan konsep automata, teknologi bom atom dan komputasi modern yang kemudian melahirkan komputer.

::John Von Neumann, Sang Penggagas Komputasi Modern

John Von Neumann adalah salah satu ilmuwan terbesar abad ini. Beliaulah yang pertama kali menggagaskan konsep sebuah sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory. Konsep inilah yang menjadi dasar arsitektur komputer modern. John Von Neumann meningkat karya-karyanya dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer. Beliau juga merupakan salah seorang ilmuwan yang sangat berpengaruh dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kepiawaian John Von Neumann teletak pada bidang teori game yang melahirkan konsep automata, teknologi bom atom dan komputasi modern yang kemudian melahirkan komputer.

Von Neumann dilahirkan di Budapest, Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit. Di sana, nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann. Pada saat Max Neumann memperoleh gelar, maka namanya berubah menjadi Von Neumann. Setelah bergelar doktor dalam ilmu hukum, dia menjadi pengacara untuk sebuah bank. Pada tahun 1903, Budapest terkenal sebagai tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi.
John von Neumann (1903-1957) adalah ilmuan yang meletakkan dasar-dasar komputer modern. Dalam hidupnya yang singkat, Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann meningkatkan karya-karyanya dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer. Beliau juga merupakan salah seorang ilmuwan yang sangat berpengaruh dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu.
Von Neumann dilahirkan di Budapest, Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit. Di sana, nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann. Pada saat Max Neumann memperoleh gelar, maka namanya berubah menjadi Von Neumann. Setelah bergelar doktor dalam ilmu hukum, dia menjadi pengacara untuk sebuah bank. Pada tahun 1903, Budapest terkenal sebagai tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi.
Von Neumann juga belajar di Berlin dan Zurich dan mendapatkan diploma pada bidang teknik kimia pada tahun 1926. Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Keahlian Von Neumann terletak pada bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.
Setelah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton serta menjadi salah satu pendiri Institute for Advanced Studies.
Dipicu ketertarikannya pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Sebagai konsultan pada pengembangan ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Kegeniusannya dalam Matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya. Pada usia 17 tahun, Von Neumann sudah memublikasikan paper-nya sendiri untuk Journal of the German Mathematical Society. Pada tahun 1926, Von Neumann lulus dengan dua gelar yaitu gelas S1 pada bidang teknik kimia dari ETH dan gelar doktor (Ph.D) pada bidang matematika dari Universitas Budapest. Semua itu di peroleh pada usia 23 tahun. Setelah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton serta menjadi salah satu pendiri Institute for Advanced Studies. Dipicu ketertarikannya pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Sebagai konsultan pada pengembangan ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Pada 8 Februari 1957 John Von Neumann pun meninggal dunia. Pada umur beliau yang singkat ini Von Neumann telah menjadi ilmuwan besar abad 21 karena idenya dalam Arsitektur Komputer atau Penggegas Komputasi Modern. Beliau pantas kita sebut sebagai Bapak Penggagas Komputasi Modern.

 3. Macam-macam komputasi modern!

Jawab :

Sebelumnya jenis -jenis komputasi modern terbagi tiga macam, yaitu komputasi mobile (bergerak), komputasi grid, dan komputasi cloud (awan). Penjelasan lebih lanjut dari jenis-jenis komputasi modern sebagai berikut :

1. Mobile computing

Mobile computing atau komputasi bergerak memiliki beberapa penjelasan, salah satunya komputasi bergerak merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel dan mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel.

Dan berdasarkan penjelasan tersebut, untuk kemajuan teknologi ke arah yang lebih dinamis membutuhkan perubahan dari sisi manusia maupun alat. Dan dapat dilihat contoh dari perangkat komputasi bergerak seperti GPS, juga tipe dari komputasi bergerak seperti smart phone, dan lain sebagainya.

2. Grid computing

Komputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar.

Ada beberapa daftar yang dapat dugunakan untuk mengenali sistem komputasi grid, adalah :

  • Sistem untuk koordinat sumber daya komputasi tidak dibawah kendali pusat.
  • Sistem menggunakan standard dan protocol yang terbuka.
  • Sistem mencoba mencapai kualitas pelayanan yang canggih, yang lebih baik diatas kualitas komponen individu pelayanan komputasi grid.

3. Cloud computing

Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

Dampak dari adanya komputasi modern ialah semakin mempermudah manusia dalam menyelesaikan masalah-masalah perhitungan yang sangat kompleks dengan menggunakan komputer dan juga merupakan sebuah pengembangan dari sistem yang ada yang terus di perbarui hingga sekarang.

Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

Adapun perbedaan antara komputasi mobile, komputasi grid dan komputasi cloud, dapat dilihat penjelasannya dibawah ini :

Perbedaan antara komputasi mobile, grid, dan cloud :

  • Komputasi mobile menggunakan teknologi komputer yang bekerja seperti handphone, sedangkan komputasi grid dan cloud menggunakan komputer.
  • Biaya untuk tenaga komputasi mobile lebih mahal dibandingkan dengan komputasi grid dan cloud.
  • Komputasi mobile tidak membutuhkan tempat dan mudah dibawa kemana-mana, sedangkan grid dan cloud membutuhkan tempat yang khusus.
  • Untuk komputasi mobile proses tergantung si pengguna, komputasi grid proses tergantung pengguna mendapatkan server atau tidak, dan komputasi cloud prosesnya membutuhkan jaringan internet sebagai penghubungnya.

Dan ada juga persamaan antara komputasi mobile, komputasi grid, dan komputasi cloud, penjelasanya sebagai berikut :

  • Ketiganya merupakan metode untuk melakukan komputasi, pemecahan masalah, dan pencarian solusi.
  • Ketiganya memerlukan alat proses data yang modern seperti komputer, laptop atau telepon genggam untuk menjalankannya.

Paralel Processing

Soal

  1. Apa yang kamu ketahui tentang komputasi ?
  2. Apa yang kamu ketahui tentang paralel processing ?
  3. Jelaskan hubungan antara komputasi modern dengan paralel processing !

Jawaban

1. Komputasi adalah ::

Komputasi sebetulnya bisa diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Komputasi merupakan suatu sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dan komputasi umumnya dilakukan dengan menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental, kadang-kadang dengan bantuan suatu tabel. Namun sekarang, kebanyakan komputasi telah dilakukan dengan menggunakan komputer.

 2.      parallel processing adalah ::

parallel processing atau pemrosesan paralel adalah penggunaan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan.

Secara umum komputasi paralel diperlukan untuk meningkatkan kecepatan komputasi bila dibandingkan dengan pemakaian komputasi pada komputer tunggal. Penggunaan komputasi parallel prosessing merupakan pilihan yang cukup handal untuk saat ini untuk pengolahan data yang besar dan banyak. Parallel komputasi melakukan perhitungan komputasi dengan menggunakan 2 atau lebih CPU/Processor dalam suatu komputer yang sama atau komputer yang berbeda dimana dalam hal ini setiap instruksi dibagi kedalam beberapa instruksi kemudian dikirim ke processor yang terlibat komputasi dan dilakukan secara bersamaan.

3.      Hubungan komputasi modern dengan paralel processing ::

Komputasi modern mengadopsi konsep paralel processing. Dalam konsep tersebut, proses perhitungan/komputasi dapat dilakukan dengan menggunakan 2 atau lebih processor dalam suatu komputer yang sama. Hal ini dapat meningkatkan kinerja komputer, yang tadinya lamban menjadi lebih cepat. Tidak hanya cepat, komputer dengan parallel processing, dapat menghitung angka yang lebih besar dari sebelumnya. Komputer yang demikian sudah termasuk ke dalam komputer dengan komputasi modern.

Bioinformatika

Soal

  1. Apa yang kamu ketahui  tentang Bioinformatika?
  2. Jelaskan sejarah dari Bioinformatika!

 Jawaban

1. Bioinformatika ::

Bioinformatika (bahasa Inggris: bioinformatics) adalah (ilmu yang mempelajari) penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Bioinformatika merupakan ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatik ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA.

2. Sejarah Bioinformatika ::

Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis sudah dilakukan sejak tahun 1960-an.

Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Perkembangan Internet juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui Internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui Internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

created by iren mudzz ^_^

 See u Next Time …. ^_^

Leave a comment »

Mengenal lebih Dalam Bio Informatika…..


Pada kesempatan kali ini di pertemuan untuk yang kesekian kalinya saya datang kembali untuk memberikan suatu informasi baru yang tentunya dapat memberikan informasi buat kita yang memerlukan. Pada kesempatan kali ini saya membuat artikel mengenai bio informatika, mungkin banyak dari kita yang sudah sering mendengar kata-kata bio informatika namun belum begitu paham apa pengertian dari bio informatika itu sendiri nah buat kita yang masih bertanya-tanya apa itu bio informatika itu mariiii yuk kita kita lihat lebih jelas pembahasan pada artikel yang saya bahas disini ^_^. Cekidot…….

Apa sih Bio informatika itu… ????

Bioinformatika (bahasa Inggris: bioinformatics) adalah (ilmu yang mempelajari) penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Bioinformatika merupakan ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatik ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA.

Kemampuan untuk memahami dan memanipulasi kode genetik DNA ini sangat didukung oleh teknologi informasi melalui perkembangan hardware dan soffware. Baik pihak pabrikan sofware dan harware maupun pihak ketiga dalam produksi perangkat lunak. Salah satu contohnya dapat dilihat pada upaya Celera Genomics, perusahaan bioteknologi Amerika Serikat yang melakukan pembacaan sekuen genom manusia yang secara maksimal memanfaatkan teknologi informasi sehingga bisa melakukan pekerjaannya dalam waktu yang singkat (hanya beberapa tahun).

Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi. Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA.

Sekuensing DNA satu organisme, misalnya suatu virus memiliki kurang lebih 5.000 nukleotida atau molekul DNA atau sekitar 11 gen, yang telah berhasil dibaca secara menyeluruh pada tahun 1977. Kemudia Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun, walaupun semua ini belum terlalu lengkap. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982.

Bioinformatika ialah ilmu yang mempelajari penerapan teknik komputasi untuk mengelola dan menganalisis informasi hayati. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologi, terutama yang terkait dengan penggunaan sekuens DNA dan asam amino. Contoh topik utama bidang ini meliputi pangkalan data untuk mengelola informasi hayati, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan struktur protein atau pun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Bioinformatika pertamakali dikemukakan pada pertengahan 1980an untuk mengacu kepada penerapan ilmu komputer dalam bidang biologi. Meskipun demikian, penerapan bidang-bidang dalam bioinformatika seperti pembuatan pangkalan data dan pengembangan algoritma untuk analisis sekuens biologi telah dilakukan sejak tahun 1960an.

Kemajuan teknik biologi molekuler dalam mengungkap sekuens biologi protein (sejak awal 1950an) dan asam nukleat (sejak 1960an) mengawali perkembangan pangkalan data dan teknik analisis sekuens biologi. Pangkalan data sekuens protein mulai dikembangkan pada tahun 1960an di Amerika Serikat, sementara pangkalan data sekuens DNA dikembangkan pada akhir 1970an di Amerika Serikat dan Jerman pada Laboratorium Biologi Molekuler Eropa (European Molecular Biology Laboratory).

Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang dapat diungkapkan pada 1980an dan 1990an. Hal ini menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, yang meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Perkembangan jaringan internet juga mendukung berkembangnya bioinformatika. Pangkalan data bioinformatika yang terhubungkan melalui internet memudahkan ilmuwan dalam mengumpulkan hasil sekuensing ke dalam pangkalan data tersebut serta memperoleh sekuens biologi sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan dalam mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

Pangkalan Data sekuens biologi dapat berupa pangkalan data primer untuk menyimpan sekuens primer asam nukleat dan protein, pangkalan data sekunder untuk menyimpan motif sekuens protein, dan pangkalan data struktur untuk menyimpan data struktur protein dan asam nukleat. Pangkalan data utama untuk sekuens asam nukleat saat ini adalah GenBank (Amerika Serikat), EMBL (the European Molecular Biology Laboratory, Eropa), dan DDBJ (DNA Data Bank of Japan, Jepang). Ketiga pangkalan data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing pangkalan data. Sumber utama data sekuens asam nukleat adalah submisi (pengumpulan) langsung dari peneliti individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam pangkalan data sekuens asam nukleat pada umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan segala sesuatu yang berkaitan dengan sekuens asam nukleat tersebut.

Selain asam nukleat, beberapa contoh pangkalan data penting yang menyimpan sekuens primer protein adalah PIR (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga pangkalan data tersebut telah digabungkan dalam UniProt, yang didanai terutama oleh Amerika Serikat. Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang pada umumnya berisi penjelasan mengenai fungsi protein tersebut.

Perangkat bioinformatika yang berkaitan erat dengan penggunaan pangkalan data sekuens Biologi ialah BLAST (Basic Local Alignment Search Tool). Penelusuran BLAST (BLAST search) pada pangkalan data sekuens memungkinkan ilmuwan untuk mencari sekuens baik asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing atau untuk memeriksa fungsi gen hasil sekuensing. Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.

PDB (Protein Data Bank, Bank Data Protein) ialah pangkalan data tunggal yang menyimpan model struktur tiga dimensi protein dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-X, spektroskopi NMR, dan mikroskopi elektron). PDB menyimpan data struktur sebagai koordinat tiga dimensi yang menggambarkan posisi atom-atom dalam protein atau pun asam nukleat.

Bagaimana sih sejarah bio informatika itu… ???

Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis sudah dilakukan sejak tahun 1960-an.

Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Perkembangan Internet juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui Internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui Internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

Penerapan utama bioinformatika

1. Basis data sekuens biologis

Sesuai dengan jenis informasi biologis yang disimpannya, basis data sekuens biologis dapat berupa basis data primer untuk menyimpan sekuens primer asam nukleat maupun protein, basis data sekunder untuk menyimpan motif sekuens protein, dan basis data struktur untuk menyimpan data struktur protein maupun asam nukleat.

Basis data utama untuk sekuens asam nukleat saat ini adalah GenBank (Amerika Serikat), EMBL (Eropa), dan DDBJ(Inggris) (DNA Data Bank of Japan, Jepang). Ketiga basis data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing basis data. Sumber utama data sekuens asam nukleat adalah submisi langsung dari periset individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam nukleat umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.

Sementara itu, contoh beberapa basis data penting yang menyimpan sekuens primer protein adalah PIR (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga basis data tersebut telah digabungkan dalam UniProt (yang didanai terutama oleh Amerika Serikat). Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang umumnya berisi penjelasan mengenai fungsi protein tersebut.

2. Penyejajaran sekuens

Penyejajaran sekuens (sequence alignment) adalah proses penyusunan/pengaturan dua atau lebih sekuens sehingga persamaan sekuens-sekuens tersebut tampak nyata. Hasil dari proses tersebut juga disebut sebagai sequence alignment atau alignment saja. Baris sekuens dalam suatu alignment diberi sisipan (umumnya dengan tanda “–”) sedemikian rupa sehingga kolom-kolomnya memuat karakter yang identik atau sama di antara sekuens-sekuens tersebut. Berikut adalah contoh alignment DNA dari dua sekuens pendek DNA yang berbeda, “ccatcaac” dan “caatgggcaac” (tanda “|” menunjukkan kecocokan atau match di antara kedua sekuens).

Sequence alignment merupakan metode dasar dalam analisis sekuens. Metode ini digunakan untuk mempelajari evolusi sekuens-sekuens dari leluhur yang sama (common ancestor). Ketidakcocokan (mismatch) dalam alignment diasosiasikan dengan proses mutasi, sedangkan kesenjangan (gap, tanda “–”) diasosiasikan dengan proses insersi atau delesi. Sequence alignment memberikan hipotesis atas proses evolusi yang terjadi dalam sekuens-sekuens tersebut. Misalnya, kedua sekuens dalam contoh alignment di atas bisa jadi berevolusi dari sekuens yang sama “ccatgggcaac”. Dalam kaitannya dengan hal ini, alignment juga dapat menunjukkan posisi-posisi yang dipertahankan (conserved) selama evolusi dalam sekuens-sekuens protein, yang menunjukkan bahwa posisi-posisi tersebut bisa jadi penting bagi struktur atau fungsi protein tersebut.

Selain itu, sequence alignment juga digunakan untuk mencari sekuens yang mirip atau sama dalam basis data sekuens. BLAST adalah salah satu metode alignment yang sering digunakan dalam penelusuran basis data sekuens. BLAST menggunakan algoritma heuristik dalam penyusunan alignment.

Beberapa metode alignment lain yang merupakan pendahulu BLAST adalah metode “Needleman-Wunsch” dan “Smith-Waterman”. Metode Needleman-Wunsch digunakan untuk menyusun alignment global di antara dua atau lebih sekuens, yaitu alignment atas keseluruhan panjang sekuens tersebut. Metode Smith-Waterman menghasilkan alignment lokal, yaitu alignment atas bagian-bagian dalam sekuens. Kedua metode tersebut menerapkan pemrograman dinamik (dynamic programming) dan hanya efektif untuk alignment dua sekuens (pairwise alignment)

3. Prediksi struktur protein

Secara kimia/fisika, bentuk struktur protein diungkap dengan kristalografi sinar-X ataupun spektroskopi NMR, namun kedua metode tersebut sangat memakan waktu dan relatif mahal. Sementara itu, metode sekuensing protein relatif lebih mudah mengungkapkan sekuens asam amino protein. Prediksi struktur protein berusaha meramalkan struktur tiga dimensi protein berdasarkan sekuens asam aminonya (dengan kata lain, meramalkan struktur tersier dan struktur sekunder berdasarkan struktur primer protein). Secara umum, metode prediksi struktur protein yang ada saat ini dapat dikategorikan ke dalam dua kelompok, yaitu metode pemodelan protein komparatif dan metode pemodelan de novo.

Pemodelan protein komparatif (comparative protein modelling) meramalkan struktur suatu protein berdasarkan struktur protein lain yang sudah diketahui. Salah satu penerapan metode ini adalah pemodelan homologi (homology modelling), yaitu prediksi struktur tersier protein berdasarkan kesamaan struktur primer protein. Pemodelan homologi didasarkan pada teori bahwa dua protein yang homolog memiliki struktur yang sangat mirip satu sama lain. Pada metode ini, struktur suatu protein (disebut protein target) ditentukan berdasarkan struktur protein lain (protein templat) yang sudah diketahui dan memiliki kemiripan sekuens dengan protein target tersebut. Selain itu, penerapan lain pemodelan komparatif adalah protein threading yang didasarkan pada kemiripan struktur tanpa kemiripan sekuens primer. Latar belakang protein threading adalah bahwa struktur protein lebih dikonservasi daripada sekuens protein selama evolusi; daerah-daerah yang penting bagi fungsi protein dipertahankan strukturnya. Pada pendekatan ini, struktur yang paling kompatibel untuk suatu sekuens asam amino dipilih dari semua jenis struktur tiga dimensi protein yang ada. Metode-metode yang tergolong dalam protein threading berusaha menentukan tingkat kompatibilitas tersebut.

Dalam pendekatan de novo atau ab initio, struktur protein ditentukan dari sekuens primernya tanpa membandingkan dengan struktur protein lain. Terdapat banyak kemungkinan dalam pendekatan ini, misalnya dengan menirukan proses pelipatan (folding) protein dari sekuens primernya menjadi struktur tersiernya (misalnya dengan simulasi dinamika molekular), atau dengan optimisasi global fungsi energi protein. Prosedur-prosedur ini cenderung membutuhkan proses komputasi yang intens, sehingga saat ini hanya digunakan dalam menentukan struktur protein-protein kecil. Beberapa usaha telah dilakukan untuk mengatasi kekurangan sumber daya komputasi tersebut, misalnya dengan superkomputer (misalnya superkomputer Blue Gene dari IBM) atau komputasi terdistribusi maupun komputasi grid.

4. Analisis ekspresi gen

Ekspresi gen dapat ditentukan dengan mengukur kadar mRNA dengan berbagai macam teknik (misalnya dengan microarray ataupun Serial Analysis of Gene Expression [“Analisis Serial Ekspresi Gen”, SAGE]). Teknik-teknik tersebut umumnya diterapkan pada analisis ekspresi gen skala besar yang mengukur ekspresi banyak gen (bahkan genom) dan menghasilkan data skala besar. Metode-metode penggalian data (data mining) diterapkan pada data tersebut untuk memperoleh pola-pola informatif. Sebagai contoh, metode-metode komparasi digunakan untuk membandingkan ekspresi di antara gen-gen, sementara metode-metode klastering (clustering) digunakan untuk mempartisi data tersebut berdasarkan kesamaan ekspresi gen.

Bioinformatika di Indonesia

Saat ini mata ajaran bioinformatika maupun mata ajaran dengan muatan bioinformatika sudah diajarkan di beberapa perguruan tinggi di Indonesia. Sekolah Ilmu dan Teknologi Hayati ITB menawarkan mata kuliah “Pengantar Bioinformatika” untuk program Sarjana dan mata kuliah “Bioinformatika” untuk program Pascasarjana. Fakultas Teknobiologi Universitas Atma Jaya, Jakarta menawarkan mata kuliah “Pengantar Bioinformatika”. Mata kuliah “Bioinformatika” diajarkan pada Program Pascasarjana Kimia Fakultas MIPA Universitas Indonesia (UI), Jakarta. Mata kuliah “Proteomik dan Bioinformatika” termasuk dalam kurikulum program S3 bioteknologi Universitas Gadjah Mada (UGM), Yogyakarta. Materi bioinformatika termasuk di dalam silabus beberapa mata kuliah untuk program sarjana maupun pascasarjana biokimia,biologi, dan bioteknologi pada Institut Pertanian Bogor (IPB). Selain itu, riset-riset yang mengarah pada bioinformatika juga telah dilaksanakan oleh mahasiswa program S1 Ilmu Komputer maupun program pascasarjana biologi serta bioteknologi IPB.

Riset bioinformatika protein dilaksanakan sebagai bagian dari aktivitas riset rekayasa protein pada Laboratorium Rekayasa Protein, Pusat Penelitian Bioteknologi Lembaga Ilmu Pengetahuan Indonesia (LIPI), Cibinong, Bogor. Lembaga Biologi Molekul Eijkman, Jakarta, secara khusus memiliki laboratorium bioinformatika sebagai fasilitas penunjang kegiatan risetnya. Selain itu, basis data sekuens DNA mikroorganisme asli Indonesia sedang dikembangkan di UI.

Sumber : 

http://bioinformatika-q.blogspot.com/

http://id.wikipedia.org/wiki/Bioinformatika

created by iren mudzz

semoga bermanfaat yaaa…. ^_^

Leave a comment »

kinerja komputasi dengan paralel processing

Pada penulisan ini saya akan membahas mengenai  kinerja komputasi dengan paralel processing yang lanjutan dari tugas softskill yang pernah saya bahas di penulisan saya yang sebelumnya. Di penulisan pertama saya dimana disitu sudah dijelaskan mengenai pengertian komputasi itu sendiri.. pastinya sudah lupa kan maka dari itu saya akan membahas sedikit mengenai pengertian komputasi itu sebelum masuk ke pembahasan yang lebih dalam… ^_^

Komputasi sebetulnya bisa diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Komputasi merupakan suatu sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dan komputasi umumnya dilakukan dengan menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental, kadang-kadang dengan bantuan suatu tabel. Namun sekarang, kebanyakan komputasi telah dilakukan dengan menggunakan komputer. Sedangkan untuk parallel processing atau pemrosesan paralel adalah penggunaan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan.

Jadi dari beberapa penjabaran di atas dapat disimpulkan bahwa paralel prosessing komputasi adalah proses atau pekerjaan komputasi di komputer dengan memakai suatu bahasa pemrograman yang dijalankan secara paralel pada saat bersamaan. Secara umum komputasi paralel diperlukan untuk meningkatkan kecepatan komputasi bila dibandingkan dengan pemakaian komputasi pada komputer tunggal. Penggunaan komputasi parallel prosessing merupakan pilihan yang cukup handal untuk saat ini untuk pengolahan data yang besar dan banyak. Parallel komputasi melakukan perhitungan komputasi dengan menggunakan 2 atau lebih CPU/Processor dalam suatu komputer yang sama atau komputer yang berbeda dimana dalam hal ini setiap instruksi dibagi kedalam beberapa instruksi kemudian dikirim ke processor yang terlibat komputasi dan dilakukan secara bersamaan. Untuk proses pembagian proses komputasi tersebut dilakukan oleh suatu software yang betugas untuk mengatur komputasi dalam hal makalah ini akan digunakan Message Parsing Interface (MPI). Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.

Parallel processing berbeda dengan multitasking, yaitu satu CPU mengeksekusi beberapa program sekaligus. Parallel processing disebut juga parallel computing. Pada sistem komputasi parallel terdiri dari beberapa unit prosesor dan beberapa unit memori. Ada dua teknik yang berbeda untuk mengakses data di unit memori, yaitu shared memory address dan message passing. Berdasarkan cara mengorganisasikan memori ini komputer paralel dibedakan menjadi shared memory parallel machine dan distributed memory parallel machine.

Prosesor dan memori ini didalam mesin paralel dapat dihubungkan (interkoneksi) secara statis maupun dinamis. Interkoneksi statis umumnya digunakan oleh distributed memory system (sistem memori terdistribusi). Sambungan langsung peer to peer digunakan untuk menghubungkan semua prosesor. Interkoneksi dinamis umumnya menggunakan switch untuk menghubungkan antar prosesor dan memori.

Komunikasi data pada sistem paralel memori terdistribusi, memerlukan alat bantu komunikasi. Alat bantu yang sering digunakan oleh sistem seperti PC Jaringan pada saat ini adalah standar MPI (Message Passing Interface) atau standar PVM (Parallel Virtual Machine)yang keduanya bekerja diatas TCP/IP communication layer. Kedua standar ini memerlukan fungsi remote access agar dapat menjalankan program pada masing-masing unit prosesor.

Salah satu protocol yang dipergunakan pada komputasi parallel adalah Network File System (NFS), NFS adalah protokol yang dapat membagi sumber daya melalui jaringan. NFS dibuat untuk dapat independent dari jenis mesin, jenis sistem operasi, dan jenis protokol transport yang digunakan. Hal ini dilakukan dengan menggunakan RPC.

NFS memperbolehkan user yang telah diijinkan untuk mengakses file-file yang berada di

remote host seperti mengakses file yang berada di lokal. Protokol yang digunakan protokol mount menentukan host remote dan jenis file sistem yang akan diakses dan menempatkan di suatu direktori, protokol NFS melakukan I/O pada remote file system.

Kinerja Parallel komputasi digunakan untuk melakukan perhitungan komputasi dengan menggunakan 2 atau lebih CPU/Processor dalam suatu komputer yang sama atau komputer yang berbeda dimana dalam hal ini setiap instruksi dibagi kedalam beberapa instruksi kemudian dikirim ke processor yang terlibat komputasi dan dilakukan secara bersamaan. Untuk proses pembagian proses komputasi tersebut dilakukan oleh suatu software yang betugas untuk mengatur komputasi. Terdapat dua jenis kinerja parallel processing yaitu Multi-core dan PC Clustering.
Multi-core adalah memperbanyak inti prmrosesan sehingga diharapkan knerja komputasi meningkat dikarenakan pemrosesan secara parallel. Awalnya Multi Core diawali oleh system Multi Prosessor. System ini membutuhkan sumberdaya untu masing-masing prosesnya, sedangkan untuk interkoneksinya dibutuhkan sebuah bus berkecepatan tinggi. Untuk membuat system multi prosessor dibutuhkan biaya serta algoritma tersendiri untuk mengendalikan dan memproses input, untuk mereduksi harga dibuatlah system multi Core yang dapat mengetengahkan masalah biaya dan kecepatan komputasi.

PC-Clustering adalah pengelompokan beberapa buah PC menjadi satu kesatuan dan mampu memproses dengan interkoneksi jaringan baik itu local maupun internet. Secara umum PC clustering dibagi menjadi tiga kategori yaitu :

1. High-availability cluster

2. Load-balancing cluster, kategori satu dan dua digunakan untuk server-server yang membutuhkan komputasi tinggi serta ketersediaan system. Tujuan dari PC Clustering jenis ini adalah menjaga service agar tetap sedia sepanjang waktu, seperti Web Searching Google.

3. Grid-Computing, Grid-computing lebih mendekati system parallel computing yang sebenarnya, karena menggunakan system penugasan. Contoh Grid Computing terbesar adalah FOLDING@HOME untuk kalkulasi untaian DNA untuk mencari obat dari penyakit kronis seperti Alzheimer dan Kanker.

Kinerja komputasi dengan menggunakan paralel processing itu menggunakan dan memanfaatkan beberapa komputer atau CPU untuk menemukan suatu pemecahan masalah dari masalah yang ada. Sehingga dapat diselesaikan dengan cepat daripada menggunakan satu komputer saja. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya. Tetapi ini untuk masalah yang besar saja, komputasi yang masalah kecil, lebih murah menggunakan satu CPU saja.

Selanjutnya perbedaan antara komputasi tunggal dan komputasi parallel dapat dilihat ada gambar berikut ini:


* Komputasi tunggal


* Komputasi parallel

Sumber:

http://thered439.blogspot.com/2011/03/kinerja-komputasi-dengan-parallel.html

http://sulistiyo.web.id/index.php?option=com_content&view=article&id=13:what-happened-to-the-locale-setting&catid=28:current-users&Itemid=44


 

Komputasi sebetulnya bisa diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Komputasi merupakan suatu sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dan komputasi umumnya dilakukan dengan menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental, kadang-kadang dengan bantuan suatu tabel. Namun sekarang, kebanyakan komputasi telah dilakukan dengan menggunakan komputer. Sedangkan untuk parallel processing atau pemrosesan paralel adalah penggunaan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek, seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbea-beda tanpa berkaitan di antaranya.

Jadi dari beberapa penjabaran di atas dapat disimpulkan bahwa paralel prosessing komputasi adalah proses atau pekerjaan komputasi di komputer dengan memakai suatu bahasa pemrograman yang dijalankan secara paralel pada saat bersamaan. Secara umum komputasi paralel diperlukan untuk meningkatkan kecepatan komputasi bila dibandingkan dengan pemakaian komputasi pada komputer tunggal. Penggunaan komputasi parallel prosessing merupakan pilihan yang cukup handal untuk saat ini untuk pengolahan data yang besar dan banyak. Parallel komputasi melakukan perhitungan komputasi dengan menggunakan 2 atau lebih CPU/Processor dalam suatu komputer yang sama atau komputer yang berbeda dimana dalam hal ini setiap instruksi dibagi kedalam beberapa instruksi kemudian dikirim ke processor yang terlibat komputasi dan dilakukan secara bersamaan. Untuk proses pembagian proses komputasi tersebut dilakukan oleh suatu software yang betugas untuk mengatur komputasi dalam hal makalah ini akan digunakan Message Parsing Interface (MPI). Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.

Parallel processing berbeda dengan multitasking, yaitu satu CPU mengeksekusi beberapa program sekaligus. Parallel processing disebut juga parallel computing.

Leave a comment »

Mengenal Lebih Dekat Apa Itu Komputasi Modern

KOMPUTASI MODERN

Disini pada pertemuan untuk yang kesekian kalinya saya datang kembali untuk memberikan suatu informasi baru yang tentunya dapat memberikan informasi buat kita yang memerlukan. Pada kesempatan kali ini saya membuat artikel mengenai komputasi modern yang mencakup pengertian komputasi modern, materi komputasi modern, sejarah komputasi modern, dan bagaimana munculnya komputasi modern itu sendiri. Untuk lebih jelas mari kita lihat ke pembahasan yang akan saya bahas disini ^_^.

Pengertian Komputasi Modern

Komputasi sebetulnya bisa diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Komputasi merupakan suatu sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dan komputasi umumnya dilakukan dengan menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental, kadang-kadang dengan bantuan suatu tabel. Namun sekarang, kebanyakan komputasi telah dilakukan dengan menggunakan komputer. Komputasi yang menggunakan komputer inilah yang disebut dengan Komputasi Modern. Komputasi modern menghitung dan mencari solusi dari masalah yang ada, yang menjadi perhitungan dari komputasi modern adalah :

1. Akurasi (bit, Floating poin)

2. Kecepatan (Dalam satuan Hz)

3. Problem volume besar (Down sizing atau paralel)

4. Modeling (NN dan GA)

5. Kompleksitas (Menggunakan teori Big O.

Secara umum iIlmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu.

Dampak dari adanya komputasi modern adalah dapat membantu manusia untuk menyelesaikan masalah-masalah yang kompleks dengan menggunakan computer. Salah satu contohnya adalah biometric. Biometric berasal dari kata Bio dan Metric. Kata bio diambil dari bahasa yunani kuno yang berarti Hidup sedangkan Metric juga berasal dari bahasa yunani kuno yang berarti ukuran, jadi jika disimpulkan biometric berarti pengukuran hidup.

Jenis-jenis komputasi modern

Sebelumnya jenis -jenis komputasi modern terbagi tiga macam, yaitu komputasi mobile (bergerak), komputasi grid, dan komputasi cloud (awan). Penjelasan lebih lanjut dari jenis-jenis komputasi modern sebagai berikut :

1. Mobile computing

Mobile computing atau komputasi bergerak memiliki beberapa penjelasan, salah satunya komputasi bergerak merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel dan mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel.

Dan berdasarkan penjelasan tersebut, untuk kemajuan teknologi ke arah yang lebih dinamis membutuhkan perubahan dari sisi manusia maupun alat. Dan dapat dilihat contoh dari perangkat komputasi bergerak seperti GPS, juga tipe dari komputasi bergerak seperti smart phone, dan lain sebagainya.

2. Grid computing

Komputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar.

Ada beberapa daftar yang dapat dugunakan untuk mengenali sistem komputasi grid, adalah :

  • Sistem untuk koordinat sumber daya komputasi tidak dibawah kendali pusat.
  • Sistem menggunakan standard dan protocol yang terbuka.
  • Sistem mencoba mencapai kualitas pelayanan yang canggih, yang lebih baik diatas kualitas komponen individu pelayanan komputasi grid.

3. Cloud computing

Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

Dampak dari adanya komputasi modern ialah semakin mempermudah manusia dalam menyelesaikan masalah-masalah perhitungan yang sangat kompleks dengan menggunakan komputer dan juga merupakan sebuah pengembangan dari sistem yang ada yang terus di perbarui hingga sekarang.

Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

Adapun perbedaan antara komputasi mobile, komputasi grid dan komputasi cloud, dapat dilihat penjelasannya dibawah ini :

Perbedaan antara komputasi mobile, grid, dan cloud :

  • Komputasi mobile menggunakan teknologi komputer yang bekerja seperti handphone, sedangkan komputasi grid dan cloud menggunakan komputer.
  • Biaya untuk tenaga komputasi mobile lebih mahal dibandingkan dengan komputasi grid dan cloud.
  • Komputasi mobile tidak membutuhkan tempat dan mudah dibawa kemana-mana, sedangkan grid dan cloud membutuhkan tempat yang khusus.
  • Untuk komputasi mobile proses tergantung si pengguna, komputasi grid proses tergantung pengguna mendapatkan server atau tidak, dan komputasi cloud prosesnya membutuhkan jaringan internet sebagai penghubungnya.

Dan ada juga persamaan antara komputasi mobile, komputasi grid, dan komputasi cloud, penjelasanya sebagai berikut :

  • Ketiganya merupakan metode untuk melakukan komputasi, pemecahan masalah, dan pencarian solusi.
  • · Ketiganya memerlukan alat proses data yang modern seperti komputer, laptop atau telepon genggam untuk menjalankannya.

Sejarah Komputasi Modern

Komputasi bisa diartikan sebagai cara untuk menyelesaikan sebuah masalah dari
inputan data dengan menggunakan algoritma.

Konsep dasar arsitektur komputer modern adalah konsep sebuah sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory. Konsep ini pertama kali digagasi oleh John Von Neumann. Beliau di lahirkan di Budapest, ibukota Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Karya – karya yang dihasilkan adalah karya dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer. Beliau juga merupakan salah seorang ilmuwan yang sangat berpengaruh dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kepiawaian John Von Neumann teletak pada bidang teori game yang melahirkan konsep automata, teknologi bom atom dan komputasi modern yang kemudian melahirkan komputer.

John Von Neumann, Sang Penggagas Komputasi Modern

John Von Neumann adalah salah satu ilmuwan terbesar abad ini. Beliaulah yang pertama kali menggagaskan konsep sebuah sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory. Konsep inilah yang menjadi dasar arsitektur komputer modern. John Von Neumann meningkat karya-karyanya dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer. Beliau juga merupakan salah seorang ilmuwan yang sangat berpengaruh dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kepiawaian John Von Neumann teletak pada bidang teori game yang melahirkan konsep automata, teknologi bom atom dan komputasi modern yang kemudian melahirkan komputer.

Von Neumann dilahirkan di Budapest, Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit. Di sana, nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann. Pada saat Max Neumann memperoleh gelar, maka namanya berubah menjadi Von Neumann. Setelah bergelar doktor dalam ilmu hukum, dia menjadi pengacara untuk sebuah bank. Pada tahun 1903, Budapest terkenal sebagai tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi.
John von Neumann (1903-1957) adalah ilmuan yang meletakkan dasar-dasar komputer modern. Dalam hidupnya yang singkat, Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann meningkatkan karya-karyanya dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer. Beliau juga merupakan salah seorang ilmuwan yang sangat berpengaruh dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu.
Von Neumann dilahirkan di Budapest, Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit. Di sana, nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann. Pada saat Max Neumann memperoleh gelar, maka namanya berubah menjadi Von Neumann. Setelah bergelar doktor dalam ilmu hukum, dia menjadi pengacara untuk sebuah bank. Pada tahun 1903, Budapest terkenal sebagai tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi.
Von Neumann juga belajar di Berlin dan Zurich dan mendapatkan diploma pada bidang teknik kimia pada tahun 1926. Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Keahlian Von Neumann terletak pada bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.
Setelah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton serta menjadi salah satu pendiri Institute for Advanced Studies.
Dipicu ketertarikannya pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Sebagai konsultan pada pengembangan ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Kegeniusannya dalam Matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya. Pada usia 17 tahun, Von Neumann sudah memublikasikan paper-nya sendiri untuk Journal of the German Mathematical Society. Pada tahun 1926, Von Neumann lulus dengan dua gelar yaitu gelas S1 pada bidang teknik kimia dari ETH dan gelar doktor (Ph.D) pada bidang matematika dari Universitas Budapest. Semua itu di peroleh pada usia 23 tahun. Setelah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton serta menjadi salah satu pendiri Institute for Advanced Studies. Dipicu ketertarikannya pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Sebagai konsultan pada pengembangan ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Pada 8 Februari 1957 John Von Neumann pun meninggal dunia. Pada umur beliau yang singkat ini Von Neumann telah menjadi ilmuwan besar abad 21 karena idenya dalam Arsitektur Komputer atau Penggegas Komputasi Modern. Beliau pantas kita sebut sebagai Bapak Penggagas Komputasi Modern.

Munculnya Komputasi Modern

Pada awalnya ilmu atau sains berdasarkan obyek kajiannya dibedakan antara Fisika, Kimia, Biologi dan Geologi. Ilmu dapat pula digolongkan berdasarkan metodologi dominan yang digunakannya, yaitu ilmu pengamatan/percobaan (observational/experimental science), ilmu teori (theoretical science) dan ilmu komputasi (computational science). Yang terakhir ini bisa dianggap bentuk yang paling baru yang muncul bersamaan dengan perkembangan kekuatan pemrosesan dalam komputer dan perkembangan teknik-teknik metode numerik dan metode komputasilainnya.

Pada awalnya komputasi modern di temukan oleh John von Neumann (1903-1957). Dia adalah ilmuan yang meletakkan dasar-dasar komputer modern. Dalam hidupnya yang singkat, Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann dilahirkan di Budapest, Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit. Von Neumann meningkatkan karya-karyanya dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer. Beliau juga merupakan salah seorang ilmuwan yang sangat berpengaruh dalam pembuatan bom atom di Los Alamos.

Von Neumann juga belajar di Berlin dan Zurich dan mendapatkan diploma pada bidang teknik kimia pada tahun 1926. Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Keahlian Von Neumann terletak pada bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.
Setelah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton serta menjadi salah satu pendiri Institute for Advanced Studies.

Created by : iren_mudzz

… GBU …

Leave a comment »

MANFAAT E-COMMERCE BAGI PENGGUNA BISNIS ONLINE

Pada penulisan di blog saya kali ini saya akan menjelaskan sedikit mengenai manfaat E-Commerce bagi pengguna bisnis online dimana di jaman yang membutuhkan teknologi ini kita sering melakukan sesuatu dengan online untuk melakukan suatu kegiatan untuk memenuhi kebutuhan kita. Maka dari itu saya akan menuliskan sedikit penjelasannya disini.

PENGERTIAN E-Commerce

E-commerce adalah kegiatan-kegiatan bisnis yang menyangkut konsumen (consumers), manufaktur (manufactures), service providers dan pedagang perantara (intermediaries) dengan menggunakan jaringan-jaringan komputer (komputer networks) yaitu internet.

E-Commerce (electronic commerce) merupakan salah satu teknologi yang berkembang pesat seiring dengan kehadiran internet dalam kehidupan kita. Ecommerce sendiri berasal dari layanan EDI (Electronic Data Interchange), layanan EDI ini telah berkembang sedemikian pesatnya di negara-negara yang mempunyai jaringan komputer dan telepon. Jika sebelumnya kita telah sering menggunakan media elektronik seperti telepon, fax, hingga handphone untuk melakukan perniagaan / perdagangan, sekarang ini, kita dapat menggunakan internet untuk melakukan perniagaan. E-Commerce memiliki beberapa jenis, yaitu:
Business to business (B2B): Bisnis antara perusahaan dengan perusahaan lain
Business to consumer (B2C): Retail, sifatnya melayani pelanggan yang bervariasi
Consumer to consumer (C2C): Sifatnya lelang (auction)
Government: G2G, G2B, G2C :melakukan layanan terhadap perusahaan untuk keperluan bisnis hingga melayani masyarakat.

MANFAAT E-COMMERCE SECARA UMUM
Manfaat yang diantisipasi dari Perdagangan Melalui Jaringan Elektronik:
1. Pelayanan pelanggan yang lebih baik.
2. Hubungan dengan pemasok dan masyarakat keuangan yang lebih baik.
3. Pengembangan atas investasi pemegang saham dan pemilik yang meningkat.
4. menekan biaya barang dan jasa,
5. serta dapat meningkatkan kepuasan konsumen sepanjang yang menyangkut kecepatan untuk mendapatkan barang yang dibutuhkan dengan kualitas yang terbaik sesuai dengan harganya
6. memperpendek waktu produk cycle
7. meningatkan Value Chain
8. meningkatkan costumer loyality
9. dan melebarkan jangkauwan.

10. Dapat meningkatkan market exposure (pangsa pasar). Transaksi on-line yang membuat semua orang di seluruh dunia dapat memesan dan membeli

produk
11. yang dijual hanya dengan melalui media computer dan tidak terbatas jarak dan waktu.
12. Menurunkan biaya operasional (operating cost). Transaksi E-Commerce adalah transaksi yang sebagian besar operasionalnya diprogram di dalam komputer sehingga biaya-biaya seperti showroom

13. Meningkatkan supply management.Transaksi E-Commerce menyebabkan pengefisienan biaya operasional pada perusahaan terutama pada jumlah karyawan dan jumlah stok barang yang tersedia sehingga untuk lebih menyempurnakan pengefisienan biaya tersebut maka sistem supply management yang baik harus ditingkatkan.
14. Memperpendek waktu produksi.Pada suatu perusahaan yang terdiri dari berbagai divisi atau sebuah distributor di mana dalam pemesanan bahan baku atau produk yang akan dijual apabila kehabisan barang dapat memesannya setiap waktu karena on-line serta akan lebih cepat dan teratur karena semuanya secara langsung terprogram dalam komputer.

Batasan waktu kerja dapat diatasi

Bisnis dapat dijalankan tanpa mengenal batas waktu karena dijalankan secara on-line melalui internet yang selalu beroperasi tiap hari.

Secara ringkas keuntungan e-commerce tersebut adalah sebagai berikut :

  1. • Bagi Konsumen : harga lebih murah, belanja cukup pada satu tempat.
  2. • Bagi Pengelola bisnis : efisiensi, tanpa kesalahan, tepat waktu
  3. • Bagi Manajemen : peningkatan pendapatan, loyalitas pelangn

Manfaat e-commerce bagi konsumen

  • Electronic commerce memungkinkan pelanggan untuk berbelanja atau melakukan transaksi lain selama 24 jam sehari sepanjang tahun dari hampir setiap lokasi.
  • Electronic commerce meemberikan lebih banyak pilihan kepada pelanggan; mereka bisa memilih berbagai produk dari banyak vendor.
  • Electronic commerce menyediakan produk-produk dan jasa yang tidak mahal kepada pelanggan dengan cara mengunjungi banyak tempat dan melakukan perbandingan secara cepat.
  • Dalam beberapa kasus, khususnya pada produk-produk yang digitized, EC menjadikan pengiriman menjadi sangat cepat.
  • Pelanggan bisa menerima informasi relevan secara detail dalam hitungan detik, bukan lagi hari atau minggi.
  • Electronic commerce memungkinkan partisipasi dalam pelelangan maya (virtual auction).
  • Electronic commerce memberi tempat bagi para pelanggan untuk berinteraksi dengan pelanggan lain di electronic community dan bertukar pikiran serta berbagai pengalaman.
  • Electronic commerce memudahkan persaingan, yang pada akhirnya akan menghasilkan diskon secara substansial.

Manfaat e-commerce bagi masyarakat

  • Electronic commerce memungkinkan orang untuk bekerja di dalam rumah dan tidak banyak keluar untuk berbelanja, akibatnya ini akan menurunkan arus kepadatan lalu lintas di jalan serta mengurangi polusi udara.
  • Elctronic commerce memungkinkan sejumlah barang dagangan dijual dengan harga lebih rendah, sehingga orang yang kurang mampu bisa membeli lebih banyak dan meningkatkan taraf hidup mereka.
  • Electronic commerce memungkinkan orang di negara-negara Dunia ketiga dan wilayah pedesan untuk menikmati aneka produk dan jasa yang akan susah mereka dapatkan tanpa EC. Ini juga termasuk peluang untuk belajar berprofesi serta mendapatkan gelar akademik.
  • Electronic commerce memfasilitasi layanan publik, seperti perawatan kesehatan, pendidikan, dan pemerataan layanan sosial yang dilaksanakan pemerintah dengan biaya yang lebih rendah, dan / atau dengan kualitas yang lebih baik. Layanan perawatan kesehatan, misalnya, bisa menajangkau pasien di daerah pedesaan.

Sumber: Dari berbagai sumber…

Leave a comment »

BISNIS dalam Bidang TI

Saat ini banyak lapangan pekerjaan yang terbuka lebar contohnya dalam bidang TI misalnya seperti bisnis online, bisnis internet dan berbagai macam lainnya dan disini saya mengambil judul “BISNIS WEB DESIGN” dalam penulisan ini karena saya menyukai sesuatu hal yang berbentuk design maka dari itu saya mengambil topik ini untuk di bahas lebih lanjut.

Dalam dunia bisnis Teknologi Informasi dan Komunikasi dimanfaatkan untuk perdagangan secara elektronik atau dikenal sebagai E-Commerce. E-Commerce adalah perdagangan menggunakan jaringan komunikasi internet.

Pekerjaan di bidang TI terbagi dalam 4 kelompok :

Kelompok pertama, adalah mereka yang bergelut di dunia perangkat lunak (software)

Yang termasuk kelompok ini adalah :

  • Sistem analis, merupakan orang yang bertugas menganalisa sistem yang akan diimplementasikan, mulai dari menganalisa sistem yang ada, tentang kelebihan dan kekurangannya, sampai studi kelayakan dan desain sistem yang akan dikembangkan.
    • Programmer, merupakan orang yang bertugas mengimplementasikan rancangan sistem analis yaitu membuat program (baik aplikasi maupun sistem operasi) sesuai sistem yang dianalisa sebelumnya.
    • Web designer adalah orang yang melakukan kegiatan perecanaan, termasuk studi kelayakan, analisis dan desain terhadap suatu proyek pembuatan aplikasi berbasis web.
    • Web programmer orang yang bertugas mengimplementasikan rancangan web designer yaitu membuat program berbasis web sesuai desain yang telah dirancang sebelumnya.

Disini Web designer adalah orang yang melakukan kegiatan perecanaan, termasuk studi kelayakan, analisis dan desain terhadap suatu proyek pembuatan aplikasi berbasis web.

Ada banyak jenis peluang bisnis di dunia saat ini sesuai dengan perkembangan tekhnologi serta berkembangnya kebutuhan manusia akan uang yang didukung oleh semakin canggihnya pemikiran manusia. Salah satu bisnis yang berhubungan dengan tekhnologi dan logika adalah Web Design dan Web Development . Namun seiring dengan semakin banyaknya orang yang kreatif, maka peluang bisnis Web Design & Development kali ini sudah agak tipis, karena banyaknya pesaing.

Hal ini bukanlah suatu alasan untuk membuat anda menyerah. Gunakan trik lain untuk menggaet pelanggan. Jika sebelumnya Bisnis Web Design & Development selalu menggunakan sistem bayar dimuka / bayar setelah web jadi, kini cobalah untuk mendesign web secara gratis, kemudian meminta bayaran secara berkala setiap semester atau setiap tahun. Hal ini bisa dikatakan lebih akurat karena member akan semakin banyak.

Apa yang dimaksud dengan website

Pada dasarnya website adalah sebuah cara untuk menampilkan diri anda di internet. Website anda adalah sebuah tempat di internet, siapa saja di dunia ini dapat mengunjunginya, kapan saja mereka dapat mengetahui tentang diri anda, memberi pertanyaan kepada anda, memberikan anda masukan atau bahkan mengetahui dan membeli produk anda.

Internet bagaikan sebuah pusat perdagangan terbesar di dunia dan website anda adalah salah satu toko / kios / kantor di pusat perdagangan tersebut.

KEUNTUNGAN WEB SITE :

A. Keuntungan Bagi Perusahaan

1. Memperpendek Jarak

2. Perluasan Pasar

3. Perluasan Jaringan Mitra Bisnis

4. Efisien (secara biaya – waktu

B. Keuntungan Bagi Konsumen

1. Efektif

2. Aman Sevara Fisik

3. Fleksibel

Beberapa hal dari usaha yang akan terbantu dengan adanya situs web adalah:

  1. Pelanggan ataupun calon pelanggan mudah menemukan lokasi usaha, toko ataupun nomer telephon anda.
  2. Informasi yang cepat dan praktis mengenai produk dan layanan anda.
  3. Jumlah tenaga pemasaran yang efektif dikarenakan pelanggan tidak perlu harus membuat janji dengan sales anda untuk memperoleh informasi produk.
  4. Membangun hubungan dengan pelanggan dengan program seperti penawaran khusus, kuis dan kontes secara online.

Sumber:

http://web.hendrawan.org/index.php?news_id=3&start=0&category_id=4&parent_id=4&arcyear=&arcmonth=

http://www.rudywebdesign.com/component/content/article/34-info-seputar-website-a-bisnis-di-internet/46-4-manfaat-website-untu-bisnis-anda.html

Leave a comment »

Dampak Euphoria Piala AFF Terhadap Perekonomian Indonesia Dalam Bidang Informatika

Seperti yang kita ketahui pada tanggal 1 Desember sampai 29 Desember 2010 yang lalu telah berlangsungnya Piala AFF 2010 yang membuat seluruh masyarakat heboh dan menjadi pembicaraan nomor 1 di Negara ini. Untuk itu saya akan menuliskan sedikit penulisan mengenai Piala AFF.

Kejuaraan piala AFF sudah lewat namun animo masyarakat untuk melihat sepakbola indonesia berjaya tetap berkobar. Menjadi runner up pada ajang piala AFF mungkin merupakan awal yang baik bagi persepakbolaan indonesia. Tidak bisa dipungkiri bahwa dengan adanya ajang tersebut masyarakat indonesia makin mencintai timnas indonesia. Dari kejuaraan AFF tersebut memiliki dampak diluar lapangan sepakbola seperti dampak perekonomian indonesia. Dengan adanya ajang tersebut banyak orang berbondong-bondong untuk membeli pernak-pernik yang berkaitan dengan timnas. Kejadian ini menaikkan omset para pedagang-pedagang kaos maupun penjual makanan yang berjualan di sekitar GBK. Dalam bidang Informatika dampak perekonomian indonesia terlihat dengan penjualan-penjualan secara online seperti penjualan tiket. Mungkin dulu masih beberapa orang yang belum mempercayai dengan transaksi online apalagi pemesanan tiket sepakbola. Dengan adanya ajang ini terciptalah iklim perdagangan baru yaitu secara online.
Dari kejuaraan AFF tersebut memiliki dampak perekonomian Indonesia yaitu :

1.    Dengan adanya ajang tersebut banyak orang berbondong-bondong untuk membeli pernak-pernik yang berkaitan dengan timnas. Kejadian ini menaikkan omset para pedagang-pedagang kaos maupun penjual makanan yang berjualan di sekitar GBK atau pun dimanapun yang menaikan omset penjualan.

2.    Dalam bidang Informatika dampak perekonomian indonesia terlihat dengan penjualan-penjualan secara online seperti penjualan tiket.

3.    dilihat dari meningkatnya permintaan kamar untuk para pendatang menginap di hotel-hotel misalnya banyak masyarakat dari luar kota yang menginap di hotel Sultan Jakarta. Kejadian ini menaikkan omset Hotel Sultan Jakarta. Tarif per malam yang paling murah saja 750 ribu dan yang paling mahal 15 juta.

4.    Masyarakat yang berada diluar negeri yang ingin mendukung negaranya secara langsung di GBK. Berarti banyak WNA dan WNI yang berada diluar negeri yang membeli tiket pesawat, baik membeli sacara langsung di bandara atau lewat online.

5.   Dengan adanya Piala AFF, para pendukung negara masing-masing akan mencari informasi tentang jadwal pertandingan dengan cara online pula.

Sumber: dari berbagai sumber…

Leave a comment »